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Identification of bird species from audio recordings has been a major
area of interest within the field of ecological surveillance and biodi-
versity conservation. Previous studies have successfully identified bird
species from given recordings. However, most of these studies are only
adaptive to low-noise acoustic environments and the cases where each
recording contains only one bird’s sound simultaneously. In reality, bird
audios recorded in the wild often contain overlapping signals, such as
bird dawn chorus, which makes audio feature extraction and accurate
classification extremely difficult. This study is the first to focus on ap-
plying a blind source separation method to identify all foreground bird
species contained in overlapping vocalization recordings. The proposed
IVA-Xception model is based on independent vector analysis and con-
volutional neural network. Experiments on 2020 Bird Sound Recogni-
tion in Complex Acoustic Environments competition (BirdCLEF2020)
dataset show that this model could achieve a higher macro F1-score and
average accuracy compared with state-of-the-art methods.

Introduction: Recent developments in the field of ecoacoustics have led
to an increasing interest in audio-based species identification. Many
ecoacoustics scientists have collected abundant acoustic information
in the wild through remote sensing techniques and performed further
soundspace analysis to explore potential ecological information [1, 2].
For example, Sumitani et al. used robot audition techniques to moni-
tor spatio-spectro-temporal dynamics of bird vocalizations [3]. The au-
dio based strategy has also been extensively adopted in automatic bird
species recognition [4].

However, it is challenging to identify bird species accurately in a
complex soundscape that contains various background noises. In re-
cent years, machine learning [5, 6] and neural network [7–9] based
methods have shown impressive performance in bird sound classifica-
tion, whereas most of the previous work has been limited to scenarios
where the recordings are carefully selected and of low noise [4]. In the
meantime, studies aimed at complex acoustic environments, such as data
augmentation methods [10, 11], spectral subtraction methods [9], and
wavelet denoising methods [12], have paid too little attention to bird
sound recognition in the case of overlapping vocalizations. Overlapping
sound signals commonly exist in unattended field recordings. Allied bird
species have similar acoustic characteristics and the overlapped signals
interfere with each other in both time and frequency domain, which
greatly affects ecological interpretations [1]. In this case, it is extremely
difficult to eliminate these interfering sound sources without losing syl-
lable information based on traditional noise reduction methods [4]. To
date, it remains to be investigated how to identify bird species from au-
dio recordings that contain multiple kinds of bird sounds at the same
time [4, 8, 13].

Blind source separation is a powerful technique to recover the original
source signals when only signal mixtures are accessible. In the past few
years, this technology has been gradually used in the fields of wildlife
monitoring and biodiversity assessment. Compared with model-based
source separation methods, it requires a less amount of data and can per-
form well without the aid of prior information [1]. This letter is novel

Fig. 1 Pipeline of IVA-Xception model

in that, it fills a gap in the research on overlapping bird sounds recogni-
tion from a source signal separation perspective. We take advantage of
today’s multi-channel recording devices, and establish the IVA-Xception
model which can achieve high performance in identifying all foreground
birds from overlapping bird sound recordings based on IVA and CNN.

Pipeline: In this letter, we propose a robust audio-based bird identifica-
tion model called IVA-Xception, which can identify all foreground bird
species from given audios and achieve high accuracy. As Figure 1 shows,
in a complete bird recognition process, the model first uses IVA [14] in
the frequency domain to separate source signals from the original multi-
channel signal. Then we utilize the CNN that has been trained to extract
features from the converted spectrograms. Finally, the Softmax classifier
is adopted to obtain the identification result. For CNN architecture selec-
tion, we utilize Xception [15] as the adaptive CNN architecture for our
system after comparing neural networks’ performance on spectrogram
feature extraction. We also apply data augmentation techniques to con-
verted spectrograms to improve the robustness of the system and solve
the data imbalance problem.

Source signal separation: The signal recorded by a microphone array
unit can be described as a convolution operation process of discrete sig-
nals from different sources, which can be expressed as

x̂m[t] =
K∑

k=1

(âmk � ŝk )[t], (1)

where x̂m[t] is the m-th microphone unit signal, ŝk[t] is the k-th source
signal, and âmk[t] is the impulse response between the two. The opera-
tor � denotes convolution. In our model, we applied IVA to separate K
bird sound sources from M-channel recordings in the frequency domain.
In contrast to the conventional blind source separation method, inde-
pendent component analysis (ICA), IVA does not suffer the frequency
permutation problem [14]. Meanwhile, it can yield a rather satisfying
separation result. It should also be pointed out that the number of chan-
nels of today’s recording devices is typically large; for example, SWIFT
developed by Cornell Lab of Ornithology [8] has 64 recording units,
which generally exceeds the number of bird sound sources. In addition,
adding extra microphones can improve the performance of source
separation. Thus, we assume M � K and model the short-time Fourier
transforms (STFT) of the recorded multi-channel signal as Equation (2).

x( f , t ) = As( f )s( f , t ) + Az( f )z( f , t ) ∈ C
M , (2)

where x( f , t ) = [x1( f , t ), . . . , xM ( f , t )]� ∈ C
M denotes the recorded

signal; s( f , t ) = [s1( f , t ), . . . , sK ( f , t )]� ∈ C
K and z( f , t ) ∈ C

M−K

are the source and noise signals, respectively; f ∈ {1, . . . , F} de-
notes the frequency bin; and t ∈ {1, . . . , T } denotes the time-
frame index. For mixing matrices, As( f ) ∈ C

M×K is the mixing
matrix for bird sound sources, and Az( f ) ∈ C

M×(M−K ) is that
for background noise. The objective of IVA is to estimate the
demixing matrix W ( f ) = [w1( f ), . . . , wM ( f )] ∈ C

M×M satisfying
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W ( f )H[As( f ), Az( f )] = IM . Eventually, the source vector s( f , t ) can be
recovered by multiplying W ( f ) by the observation signal x( f , t )

sk ( f , t ) = wk ( f )Hx( f , t ) ∈ C, k ∈ {1, . . . , K}

z( f , t ) = Wz( f )Hx( f , t ) ∈ C
M−K

Wz( f ) = [wK+1( f ), . . . , wM ( f )] ∈ C
M×(M−K )

where IM is the identity matrix and H is the Hermitian transpose. It is
also noteworthy that there is often no need to separate the noise compo-
nents. Some assumptions must be met to make the estimation possible.
The most crucial one is that subcomponents s1( f , t ), . . . , sK ( f , t )
must be statistically independent and non-stationary. Armed with these
preliminaries, we applied the OverIVA algorithm [16] to learn the
demixing matrix W ( f ). OverIVA algorithm, whose object is minimiz-
ing the negative log-likelihood of the observed data, takes advantage
of the iterative projection technique and reduces the computational cost
theoretically. It is superior to the most commonly used IVA algorithms
in terms of convergence speed and effectiveness.

Spectrogram conversion and selection: In this part, each sepa-
rated single-channel audio was converted to a log-amplitude Mel-
spectrogram, and then spectrograms which are from bird sounds rather
than noises were selected. Specifically, we first chopped the audio sig-
nals into 1-s chunks and transformed these chunks into log-amplitude
Mel-spectrograms. We set the pre-emphasis factor to 0.95 and a fre-
quency range of approximately 900 to 15,100 Hz. Each spectrogram
size was set to be 299×299 px. However, we found that the obtained
spectrograms contained many noise spectrograms, where there were lit-
tle or almost negligible bird sound syllables. These noise spectrograms
could be misleading when training the CNN, as they are labelled as bird
sounds. Therefore, we conducted spectrogram selection work referred
to prior work [6] by estimating the signal-to-noise ratio (SNR) of the
spectrogram because spectrograms with a higher SNR are more likely to
contain bird sounds.

CNN network training and species identification: This study utilized a
CNN to extract features from spectrograms. During data preprocessing,
we noticed the data imbalance problem after the spectrogram conver-
sion process. The maximum number of spectrograms of certain bird
species reaches up to 6924, yet the minimum is only 146. Referred to
work [10, 11], the following data augmentation methods were used to
solve this problem: horizontal shift, adjusting brightness, adjusting con-
trast, adding Gaussian noise, adding background noise, random pixel
dropout, color space augmentations, volume shift, and pitch shift. As a
result, We made the number of spectrograms of each species to be 1500.
For the selection of CNN architecture, we conducted experiments to pick
the most suitable one from three CNNs that achieved excellent perfor-
mances in past image classification works: Inception-v3 (ranked first at
BirdCLEF2019) [17], Xception (ranked second at BirdCLEF2020), and
EfficientNet-B3 [18]. The experiment results suggested that Xception
performs best among the three architectures, which is elaborated in the
experiment validation section. It is worth mentioning that as we previ-
ously chopped the audios into 1-s chunks, each separated single-source
audio generated multiple spectrograms, and each spectrogram had its
own classification result. We defined a principle of how to interpret clas-
sification results for audio chunks based on classification results of its
converted spectrograms: we arranged the predicted probability values
for each spectrogram in descending order, like p1 > p2 > . . . > pi, and
set a dynamic threshold λ to describe the reliability of prediction result.
Once p1 − p2 > λ, we put the prediction result of the corresponding
spectrogram into a “confidence list,” otherwise it was discarded. Then
the final prediction probability distribution was produced by averaging
prediction results of the spectrograms in the confidence list.

Experimental validation: The audio data used in this experiment is
the official dataset provided by the BirdCLEF2020 competition [19].
The original data set comes from the Xeno-Canto community and con-
tains nearly 80,000 recordings, covering more than 1500 birds. In par-

Table 1. Performance of the three CNNs on the test set

CNN architecture F1-score (%) Accuracy(%)

EfficientNet-B3 87.49 87.83

Xception 90.85 90.62

Inception-v3 81.37 80.97

(a) Change of loss (b) Change of accuracy

Fig. 2 Change of loss and accuracy with epoch during training for three
CNNs

ticular, the audio contains both stationary and non-stationary back-
ground noises.

Two experiments were conducted in this letter. The first experiment
was aimed to select an adaptive CNN architecture. For each model, we
processed the spectrogram data with the same preprocessing methods
and evaluated the network’s performance on bird sound spectrogram
classification according to macro F1-score and average accuracy. We se-
lected 50 species of birds in this experiment and split the audio data of
these birds into training, validation, and test sets at an 8:1:1 ratio. We
converted the audio files into spectrograms according to the methods
described in previous sections. After applying data augmentation meth-
ods to the training and validation set, the number of spectrograms for
each bird in the training set was 1500, and the number of spectrograms
for both the validation and test sets was 190. After completing CNN
training, we evaluated the model’s performance with the test set. The
experimental results are given in Table 1.

As Table 1 shows, Xception obtained the best spectrogram classifica-
tion result, and the F1-score score on the test set was 3.36% higher than
EfficientNet-B3 and 9.48% higher than Inception-v3. It also obtained the
best accuracy score. Moreover, Xception showed a faster convergence
speed during the training process, as is shown in Figure 2.

In the second experiment, we explored the effect of IVA-based sig-
nal separation on the identification performance, and tested the model
robustness when interference sources were added. From the primary
50 species, we randomly selected five bird species:Great Reed Warbler,
Eurasian Reed Warbler, Long-tailed Tit, Black-throated Sparrow, and
Slate-colored Grosbeak. Then, the single-channel audios of these species
provided by BirdCLEF2020 were first unified to 8 s, 44,100 Hz, 32 bit
with the same power. To simulate real recording environments, we set
up a complex soundscape with overlapping vocalizations using the im-
age source method implemented in the pyroomacoustics Python pack-
age [20]. Concretely, we simulated a 20 m×20 m×10 m 3-dimensional
space with a reverberation time of 0.2 s, set the relative humidity of the
air to be 50%, and set the temperature to be 20◦C. The absorption of
sound energy by the air was also simulated. For spatial relationship, tar-
get sources were placed in different directions at a distance of 6 to 7 m
from the microphone array and 6 m from the ground. The microphone ar-
ray units were placed on a fan-shaped area of radius 3 cm centred at [13,
10, 3.5] in the same height. To enhance the robustness of the proposed
model, we also added sounds of other species as interference sources,
which distributed randomly in a cuboid with x-axis spanning from 16
to 20, y-axis spanning from 2 to 20, and z-axis spanning from 6 to 9.
As for the relationship of power between the target sources and interfer-
ence sources, we referred to work [16]. The overall setup is illustrated in
Figure 3.

During the experiment, we simulated two target sources and three
target sources cases, denoted as two-birds and three-birds, respectively.
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Fig. 3 Vertical view of the simulated soundscape setup

Table 2. Performance comparison of IVA-Xception and Xception.
The symbol * indicates sounds of other bird species are added as
interference. For the 2-birds case, two recording units were used,
and for 3-birds case, four recording units were used

Num. of species Method F1-score (%) Accuracy (%)

2-birds Xception 75.38 64.80

IVA-Xception 86.58 80.20

IVA-Xception* 86.96 80.40

3-birds Xception 65.21 53.07

IVA-Xception 80.46 69.00

IVA-Xception* 80.00 68.20

Specifically, for the two-birds case, the experiment traversed C2
5 = 10

combinations. For each combination, we generated 50 audio files ran-
domly, obtaining a total of 500 test audios. Similarly, in three-birds case,
the experiment traversed C3

5 = 10 combinations, and we also obtained
500 test audios. After completing the simulation process, we collected
signals recorded by the microphone array and then input them into the
models to identify all of the foreground species. To explore the effect of
IVA-based signal separation on the identification performance, we com-
pared the performance of our proposed IVA-Xception model with the
Xception model without the source separation process. The experiment
results are shown in Table 2.

As Table 2 shows, the F1-score and accuracy of the IVA-Xception
were significantly higher than Xception in both the 2-birds case and
the 3-birds case. In other words, our proposed model shows a gen-
erally improved classification performance of 10% to 16% over the
state-of-the-art Xception model. Therefore, it is demonstrated that
blind source separation indeed contributes to identification performance.
Moreover, IVA-Xception yields stable results even in scenarios with in-
terference, reflecting strong robustness.

Conclusion: This is the first study that set out to identify all foreground
bird species from overlapping vocalizations audio recordings using a
blind source separation method. Before this study, it was difficult to
make accurate classifications in scenarios like dawn chorus. The estab-
lished IVA-Xception identification model is robust and shows excellent
performance. It is validated by experiments that Xception has the best
ability of spectrogram feature extraction, the IVA-Xception model is
superior to state-of-the-art models in the bird sound recognition area,
and our proposed model is robust against all possible realizations of the
modelled uncertainty. Further research could also be conducted to exam-
ine how to identify bird species in under-determined states and single-
channel overlapping vocalization audio recordings. Finally, all source
codes used in this letter could be accessed on GitHub [21].
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